USN

Fifth Semester B.E. Degree Examination, Dec.2015/Jan.2016 Naval Architecture – I

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Explain Simpsons Rule for 3 ordinates.

(10 Marks)

b. The half ordinates of a water plane 180 m long are as follows:

		T				, <u>'</u>							
Section	AP	1	1	1 2	2	l 1	I &		7	O	٦ ا		ED
Beenon	α	L	L	4)	4+	J	סו	1 /	1 8	ו עו		!
				i .					i		Jan 1984	این	
		2		ŀ				i			14 A		
	į.	Z	ı	1			ì	!		- 1	1.7	2	
		- c	2 2	40 -							-		
	10	5.0	8.0	10.5	12.5	13.5	13.5	12.5	11.0	7.5	してのし	1 / 1	0 m
- ord	_		0.0	- 0.5	12.0	13.5	13.5	12.5	11.0		3.0	1.0	UIII
- Old			1							3			
1-2			1						1 1	Seri .			
	L	i	L	1		l		l	"ს		I		

Calculate:

- i) Area of waterplane.
- ii) Distance of centroid from midships.
- iii) Second moment of area of waterplane about a transverse axis through centroid.

(10 Marks)

2 a. Define DWT, GT, NT, TPC.

(08 Marks)

- b. A ship 140 m long and 18 m beam floats at a drought of 9 m. The immersed cross-sectional areas at equal intervals are 5, 60, 116, 145, 152, 153, 151, 142, 85 and 0 m² respectively.

 Calculate: i) Displacement ii) Block cefficient iii) Midshipsection area coefficient iv) Prismatic coefficient.

 (12 Marks)
- 3 a. Explain wetted surface area and its relation with similar figures. (12 Marks)
 - b. A ship of 120 m long displaces 11000 tonne and has a wetted surface area of 2500 m². Calculate the displacement and wetted surface area of a 6 m model of ship. (08 Marks)
- 4 a. Explain inclining experiment and define, i) Transverse metacentre ii) Righting lever iii) Righting moment iv) Centre of gravity. (12 Marks)
 - b. A vessel of 10,000 tonne displacement has a second moment of area of waterplane about centerline of 60×10^3 m⁴. The centre of buoyancy is 2.75 m above the keel. The following are disposition of masses on board the ship.

4000 tonne 6.30 m above keel.

2000 tonne 7.50 m above keel.

4000 tonne 9.15 m above keel

Calculate the metacentric height.

(08 Marks)

PART - B

- 5 a. What is free surface effect and methods to reduce it, how it will affect on GM. (10 Marks)
 - b. A ship of 12500 tonne displacement and 15 m beam has a metacentric height of 1.10 m. A mass of 80 tonne is fitted from its position in centre of the lower hold by one of ships derricks and placed on quay 2 m from ships side. The ship heels to a maximum angle of 3.5°, when mass is being moved.
 - i) Does the GM alter during the operation?
 - ii) Calculate height of derrick head above the original centre of gravity of the mass.

(10 Marks)

10MR52

6	a.	Explain change in mean draught due to change in density.	(10 Marks)
	b.	Explain change in trim due to change in density.	(10 Marks)

a. Explain about docking and docking plan. (10 Marks)

7

b. Write notes on loss of stability due to grounding. (10 Marks)

8 a. Write notes on types of resistance. (12 Marks)

b. A plate drawn through fresh water at 3 m/s has a frictional resistance of 12 N/m². Estimate the power required to overcome the frictional resistance of a ship at 12 knots if the wetted surface area is 3300 m^2 and index of speed is 1-9.
